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Abstract-Non-linear kinematic equations for film thickness which takes into account the effect of viscosity 
variation governed by the Arrhenius-type relation are used to investigate the non-linear stability of film 
flows. The results show that cooling (heating) from the wall will stabilize (destabilize) the film flows both 
linearly and nonlinearly. The supercritical stability and subcritical instability both prove possible here with 
higher heating tending to reduce the threshold amplitude in the subcritical unstable region and increase the 
amplitude of supercritical waves. Stability is also influenced by the Prandtl number in the way that stability 

increases (decreases) as the Prandtl number increases when cooling (heating). 

INTRODUCTION 

THE FLOW of thin liquid films has been shown to be 
linearly unstable with respect to surface waves [l, 21. 
The non-linear modification of linear waves was stud- 
ied by Benney [3], but the effect of surface tension was 
not included, so that the solution had no tendency 
towards a finite amplitude equilibrium state. If the 
effect of surface tension is included, then the super- 
critical stability was found to be possible [4-61. 
Further, Anshus [4] reported that non-linear insta- 
bility appeared in the region near the upper branch of 
the neutral stability curve, which was just opposed to 
ref. [6] finding that such instability existed near the 
lower branch of the neutral stability curve in the CL- 
Re plane. 

The effects of the temperature gradient across a film 
with constant viscosity and with phase change on the 
interface has been investigated by Unsal and Thomas 
[7, 81, Spinder [9] and Kocamustafaogullari [IO]. 
However, as the gradient tends to be high, the assump- 
tion of constant viscosity can hardly be justified. Shair 
[l I] and Yih and Seagrave [12] have also studied this 
problem by assuming that viscosity varies con- 
tinuously with depth in a fixed manner. All their stud- 
ies come to the same conclusion that heating from the 
wall destabilizes the film flow, while cooling stabilizes 
the system. 

Since these studies assumed a fixed depth depen- 
dence for the viscosity, perturbation of the viscosity 
was not allowed, as indicated by Spindle [13]. It was 
Craik and Smith [14] and Goussis and Kelly [l&16] 
that started considering the effect of viscosity per- 
turbation. Craik and Smith assumed that the viscosity 
of a fluid element remains constant as it is convected 
in the flow. and so were thought to have ignored the 
effects of diffusion. While Goussis and Kelly revealed 
that, in the case of cooling, a cut-off Prandtl number, 

above which the flow turned to be linearly stable with 
respect to long waves and linearly unstable with 
respect to short waves [16], did exist. Apparently, 
most of their studies were addressed to linear theory 
analyses. 

This paper studies the non-linear stability of liquid 
film flows with viscosity variation depending expo- 
nentially on temperature on a valid-for-long-waves 
basis. Effects of surface tension and perturbations of 
the viscosity are also included. 

THE NON-LINEAR KINEMATIC EQUATION 

Consider a liquid film flow down an inclined plane 
as shown in Fig. 1. With all properties being constant 
except viscosity that varies with temperature accord- 
ing to the Arrhenius-type relation, the governing 
equations are 

aU+d”,() 
ax ay (1) 
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where u, v, are the velocities, p the density, cp the 
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4&C functions of parameters 
A r Arrhenius number 
c complex wave velocity, c, + iCi 

CP 
specific heat of liquid 

9 gravitational acceleration 
h film thickness 
k thermal conductivity of liquid 

L,LmL, operators 

PS pressure of gas 
Pr Prandtl number 

Pr, cut-off Prandtl number 
R radius of curvature of the free surface 
Re Reynolds number 

Re, critical Reynolds number 
s surface tension 
t time 

to, tl time scales 
T temperature 

TW temperature of the wall 

TS temperature on the free surface 
u velocity in the x-direction 
u reference velocity 

V velocity in the y-direction 

X?Y spatial coordinates. 

NOMENCLATURE 

Greek symbols 

; 

dimensionless wave number 
parameter indicating the gradient of 
viscosity 

Y angle of inclination 
E small parameter 

z 
perturbation of film thickness 
dimensionless temperature 

a wavelength of disturbance 
A increment of wave speed 

/J viscosity 
V kinematic viscosity 

P density 
d dimensionless surface tension 

7” normal stress 

r, shear stress. 

Subscripts 
x, y, t, . . differentiation with respect to 

x,y,t,... 

Superscript 
* dimensionless quantity. 

FIG. 1. Diagram of the film flow system. 

specific heat, p the pressure, T the temperature and k 
the thermal conductivity of the liquid. The viscosity 
p, which is dependent on temperature, is given as 
follows : 

i = :exp(-Ar(T-TT,)/T,I 

where T. is the temperature at the free surface and Ar 
the Arrhenius number. For the boundary conditions, 
the no-slip and constant temperature conditions at 
the wall are 

u=v=O, T=T, at y=O. (3 

At the free surface, the constant temperature, the bal- 
ance of normal and tangential forces, and the kine- 
matic conditions are 

Dh 
T=T,, z,=O, T,,-;= -pg, %=v 

at y = h (6) 

where r,, r,, pg are the shear stress, the normal stress, 
and the gas pressure at the free surface, respectively, 
S the surface tension and R the radius of curvature of 
the free surface. After defining some dimensionless 
variables as follows : 

2m5 P-P% _ h 
a=77 /# 

p*, h*=_, x*=E y*=; 

h t;' h 

alit 
t* =u’ u* 2, 

u 
g+ = v 

au 

Pe= RePr, %=G 
I 

o= [24vi;;siny]i3, R.-$?=+Tw-Ts) 

(7) 

where 



For the isothemal pr&km, the film flow becomes 
unstable under long wave perturbations jsmall wave 
number), tien the solutions ofthe above system could 
be obtained in the following way. By introducing the 
expan si on5 

ll=BGs.EuI~$.~~- 

B= 8,rc&,+ ‘.- (17 

then substituting equatians (17) info equations (8)- 
(16) and colkzting terms by order which enable us to 
obtain the folIowing zero- and fist-order systems : 

%@I 
I 

(@“QUQJJ,), 4” z = 0 Wf 
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Substituting solutions (31) into equation (16) and 
eliminating h, appearing in the first-order solution by 
equation (16) itself, yields the following non-linear 
kinematic equation of surface height : 

h,+/l(h)h,f a~[B(h)C+C(h)h,,l = 0 (32) 

where 

A(h) = T,h2 

B(h) = [(T3-T,T2)Pe+(Ts-T,T5)Re]h6 

-2T,cotyh3 

C(h) = ~u~T,uN-‘/~ Re-2’3 h3 

in which Ti, ai, ri are given in the Appendix. 

STABILITY ANALYSIS 

In the unperturbed state, the non-dimensional 
thickness h is equal to 1. Therefore, the non-dimen- 
sional film thickness for the perturbed state could be 
expanded in the following form : 

h=l+?j (33) 

where q is the perturbation of the thickness. Sub- 
stituting equation (33) into equation (32) and keeping 
the terms up to third order in r~ lead to the evolution 
equation of r] 

Lrj = -(A/~+~~~~~2)‘I~-.~[(B’~+:8”1’)1, 

+ (C/?-t fC”s’)Vx,l+ O(V4) (34) 

where 

L=$fA&for .g+cg [ 1 
and the values of A, B and their derivatives are evalu- 
atedath= 1. 

For the linear stability analysis, the non-linear part 
of equation (34) is neglected and the normal mode 
solution is assumed as 

n = Iexp[i(x-ct)]+iiexp[-i(x-ct)] (35) 

then, the complex wave celerity becomes 

c = c,+iq = A+ia(B-C). (36) 

If ci > 0, the film flow is linearly unstable. On the 
other hand, if ci < 0, the film flow is linearly stable. 

For the non-linear stability analysis, we use the 
method of multiple scales 

aa a a 
-+-+e&+2;j;; at at 

a a a 
ax’z+ax, 

~=E~,+&2t/2+&3~3 (37) 

then equation (34) becomes 

(L,+eL, +e2L,)(aq, +e2q2+s3r)3) 

= -E~N~-E~N~ (38) 

where 

L, = L 

L, =&+A&+a 
, I 

28~~+4C$& 
I I I 

1 
N2 = A’?,tl,*+tl[B’(?,‘1,x,+1?:,) 

+ C’h ,tl ,xXxX +? IA lxxx)1 

N3 = A’(tl,?2r+?2tl,x+‘l,?,xl)+12A”~ftl,, 

+a[B’(211,,12,+rl,r12xx+~211,xx,+21,~,xl 

+?,x,x ,>+B”(12?:?,,,+rt,tl:,) 

+C’(tl,fl2xxxx +‘llxxxx~2+?l*~zxxx 

+4q,rl,,,,+31,,1,,,+rl,xxx)?Ix,) 

+C”(ttl:?,,x,,+4,?,xl,**x)l. 

Equation (38) is then solved order by order to get 
the solution for the O(E) equation - L,q , = 0 

‘I, = r(x,,t,, t2)exp[i(x-c,t)]+C.C. (39) 

Then the solution of q2 and the secular condition 
for the 0(s3) equation are 

q2 = C,12exp[2i(x-c,t)]+C.C. (40) 

g- +D, g -E-2Cir+E,lT = 0 (41) 
2 I 

where 

1 
C, = C,,+iCli = 4GL(4C_B)2a(B’-C’)-iA’ 

D, = B-6C 

E, = E,,+iEli 

E,, = -A’C,,+u[+(C”-B”)+(7C’-B’)C,,] 

E,i = A’C,,+~A”+U[(~C’-B’)C,~]. 

We shall use equation (41) to investigate the weakly 
non-linear behaviour of film flow. Firstly for a filtered 
wave, there is no spatial modulation and this solution 
may be written as 

I = cexp [-iAt,] (42) 

substituting expression (42) into equation (41), and 
neglecting the diffusion term, we obtain the following 
results : 



Non-linear stability analysis of film flow down a heated or cooled inclined plane 1179 

(43) 

From the form of E[ one knows that in the linearly 
unstable region (ci > 0) the condition of existence of 
the supercritical wave is E,, > 0, and 2~[ is the final 
amplitude. On the other hand, in the linearly stable 
region (ci < 0) if E,, < 0 then the film flow has the 
behaviour of subcritical instability and 2&c is the 
amplitude of threshold. 

It is known that experimental work to control the 
wave motion at a highly specific mode is an extremely 
difficult task ; the presence of side-band disturbance 
can hardly be avoided in laboratories or in practice. 
Studies for this disturbance were given by Eckhaus 
[17], Stuart and Diprima [18] and Keefe [19]. Just 
like the analysis of ref. [6], in this study, the stable 
condition of the supercritical wave under side-band 
disturbance is D, < 0. 

RESULTS AND DISCUSSION 

From equation (36), we have the expressions of 
linear wave speed and amplitude rate as 

c, = T, 

uq = u’[(T,-T,T,)RePr+(T,-T,T,)Re 

-2T,coty-2~x~T,aN-‘/~ Re-2’3]. (49 

It is noted that the linear component of wave speed, 
c,, obtained in this paper is identical with equation 
(24) of ref. [15]. When the film is heated from below 
(/I < 0) this speed increases as p decreases. Also, when 
the film is cooled from below (/I > 0), this speed 
decreases as B increases. It can be shown in Fig. 2 that 
as b-+0, c,=2; while as /?-co, c,=O, and /I- 
- co, c, = 3. 

The condition of linear stability or instability is 
dependent on the sign of CCC~. The neutral stability 

01 I I 
-10.0 0 10.0 

L3= p/T,) 

FIG. 2. Linear wave speed vs B. 
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FIG. 3. Cut-off Prandtl number vs 8. 

curve (ctc, = 0) which separates the a-Re plane into 
two regions ; namely, the linearly unstable region 
(xci > 0) where the small disturbance grows with time 
and the linearly stable region (c[ci < 0) where the small 
disturbance decays with time. It is found that when 
the value of /I is positive then the value of (T3 - T, T,) 
is negative, suggesting a cut-off Prandtl number, Pr,, 
exists. When the Prandtl number is larger than this 
value the flow is linearly stable with respect to long 
waves. Figure 3 shows that the value of the cut-off 
Prandtl number decreases as the value of /3 increases. 

From expression (44), it is found that the critical 
Reynolds number and the most rapidly growing linear 
mode are respectively 

2T,cot y 
Ret = (T, - T, T,) Pr + (T, - T, T,) 

N1/3 Rev3 
cr, = 4T d KT3 - T, TJRePr 

4 

+(T,-T,T,)Re-2T,coty] 1 (45) 

From Fig. 4 it is readily seen that increasing the 

FIG. 4. Linear neutral curve with different values of p: 
CT = 911.25, Pr = 7, y = z/2. ----, 8=-l, P) 

p = 0.2; ---, /, = 1. 

HHT 31:9-C 
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FIG. 5. Linear amplitude rate with different values of p: FIG. 7. Linear amplitude rate with different Prandtl numbers 
Re = 2, Pr = 2, (r = 911.25, y = n/2. -p---, p = - 1; whenfi<O,/I=-1.5,Re=5,y=n/2,~=911.25.------. 

----) p = -0.2; -----,j?=o.2;-----,b= 1. Pr=2; P) Pr = 4. 
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FIG. 6. Linear amplitude rate with different Prandtl numbers 
when fi>O, 8=1.5, Re=5, y=n/2. ------, Pr=2; 

-, Pr = 4. 

value of fi will increase the linearly stable region in 
the u-Re plane. Also, Fig. 5 shows that decreasing the 
value of jI will increase the linear amplitude rate. The 
above results both indicate that cooling stabilizes the 
film flow, while heating destabilizes it. 

Figure 6 shows that increasing the Prandtl number 
will decrease the linear amplitude rate when fi > 0. 
Figure 7 shows that increasing the Prandtl number 
will slightly increase the linear amplitude rate when 
/I < 0. 

The non-linear stability analysis is used to study 
whether the finite amplitude disturbance in the lin- 
early stable region will cause instability (subcritical 
instability), as well as to study whether the subsequent 
non-linear evolution of disturbance in the linearly 
unstable region will develop into new equilibrium with 
finite amplitude (supercritical stability) or such evo- 
lution will grow towards an explosive state. A review 
of the characteristics of equation (40) will show that 

the negative value of E ,r tends to cause the system to 
be nonlinearly unstable. Such instability in the linearly 
stable region is called subcritical instability. That is, 
when the amplitude of disturbance is larger than that 
of the threshold, then the amplitude will grow 
although the prediction from the linear theory is 
stable. On the other hand, such instability in the 
linearly unstable region will lead the system to an 
explosive state which could be considered as solutions 
of complex patterns. 

It is observed, the shaded regions of Figs. 8 and 9, 
that both subcritical instability (ci < 0, E,, < 0) and 
the explosive solution (c, > 0, E,, < 0) are possible for 
the film flow. Additionally, it is found that increasing 
the value of /I will decrease the areas of regions of 
non-linear instability in the a-Re plane. It is also 
observed that supercritical stability (c, > 0, E,, < 0. 

blank region in the linearly unstable region) is possible 
near the region of the upper branch of the linearly 

0 5 .oo 10.00 

FIG. 8. Non-linear stability curve for the case of cooling: 
b = 1, 0 = 911.25. Pr = 7, y = z/2. - - - - - - -. Side-band neu- 

tral stability curve. 
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FIG. 9. Non-linear stability curve for the case of heating: 
B = - 1, CT = 911.25, Pr = 7, y = s/2. - - - - -, Side-band neu- 

tral stability curve. 
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A 

FIG. 10. The amplitude of threshold in the subcritical 
unstable region : Re = 7, c = 911.25, Pr = 7, y = n/2. 

neutral curve. In such a case, filtered waves are linearly 
stable when subject to side-band disturbance. 

It is interesting to note that ref. [4] predicted the 
possibility of the existence of subcritical instability for 
the film flow, but it did not discover the explosive 
solution in the region near the lower branch of the 
neutral stability curve. In contradiction to this, refs. 
[5, 6, 81 indicated that the subcritical instability was 
not possible for the film flow. In reality, the possibility 
of existence of subcritical instability and supercritical 
stability was pointed out by some researchers [20,21]. 
From our viewpoint, especially for the case of heating 
from the wall (/I c 0), those results of previous studies 
of refs. [4-81 perhaps have expressed some aspects 
of the film flow system but the description was not 
adequate. 

Figure 10 displays the amplitude of threshold in the 
subcritical unstable region with different values of p. It 
is found that heating will decrease such an amplitude. 
From Fig. 11, we find that the finite amplitude of a 
supercritical wave will increase as /? decreases. 

Figure 12 shows that increasing the Prandtl number 

0.80 - 

10 

FIG. 11. Finite amplitude of supercritical wave with different 
values of 8: Re = 5, o = 911.25, Pr = 7, y = n/2. 
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FIG. 12. Finite amplitude of supercritical wave with different 
Prandtl numbers when fi > 0, p = 1.5, Re = 5, CT = 911.25, 

y=n/2.------,Pr=2; -, Pr = 4. 
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FIG. 13. Finite amplitude of supercritical wave with different 
Prandtl numbers when /Ii 0, /I = -1.5, Re= 2, 

D = 911.25, y = x/2. ------, Pr = 2; -, Pr = 4. 
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FIG. 14. Linear and non-linear wave speed with different 
values of /J: Re= 5, (T = 911.25, Pr = 7, y = 1112. ----, 

c,; p, c,+E2A. 

will decrease the amplitude of supercritical waves 
when /I > 0. Figure 13 shows that increasing the 
Prandtl number will slightly increase the amplitude of 
the supercritical wave when /I < 0. Also, Fig. 14 shows 
that the difference of non-linear wave speed (cr + &‘A) 
and linear wave speed (c~) increases when the value of 
B decreases. 

It is clear that, from the choice of reference tem- 
perature in this study, cooling results in a virtually 
more viscous fluid, while heating results in a less vis- 
cous one. This is the reason why cooling causes film 
flow more stable than heating does. 

The above theory has the following three limi- 
tations for applications. 

(1) Refer to equations (15) and (24), when Reyn- 
olds number becomes zero, a singular point exists. 
The results might not be applied at this point and need 
further modifications. 

(2) The value of tl cannot be too large, since long 
waves are addressed in this analysis. In the case of 
cooling, the value of /I can never exceed the cut-off 
value as pointed out by ref. [ 161. 

(3) In this study C&J is taken to be of O(1) so 
that the applications may be invalid in the region 
O(a) << O(a-I/*). For most of the known liquids the 
low bound of O(a) is about of O(lO-*) here. 

CONCLUSION 

In this study, a non-linear kinematic equation for 
film thickness taking into account the effect of vis- 
cosity variation is used to investigate both the linear 
and non-linear stabilities of film flows. Since the vis- 
cosity variation is mainly caused by the thermal effect 
and the interfacial temperature is taken as the ref- 
erence temperature, hence, cooling from the wall 
results in a more viscous fluid, while heating results 
in a less viscous one. The parameter, /I, the gradient 
of viscosity, is introduced here and its value is positive 
(negative) when cooling (heating) from the wall. 

For the linear theory, a closed form solution is 
reached, from which the critical Reynolds number and 
most unstable linear mode are obtained analytically. 
It is found that the linear waves are travelling at three 
times the speed of the unperturbed surface as /I 
approaches - cc ; as /I approaches 00, the linear wave 
speed approaches zero. It is also found that the linear 
amplitude rate increases as the value of /I decreases. 
For the case of cooling, a cut-off Prandtl number 
exists. For values above this number, the flow is stable 
with respect to long-wave disturbance. Increasing the 
Prandtl number will stabilize (destabilize) the film 
flowwhen/3>0(<0). 

The non-linear stability analysis shows that, 
especially in the case of heating from the wall (/I < 0), 
both supercritical stability and subcritical instability 
are possible for the film flow system. The nonlinearly 
unstable region in the a-Re (wave number-Reynolds 
number) plane will increase when the value of fl 
decreases. Also, decreasing the value of/i will reduce 
the amplitude of threshold in the subcritical unstable 
region and will increase the amplitude of the super- 
critical wave. 

To wrap up, heating from the wall will linearly and 
non-linearly destabilize the film flow system, while 
cooling from the wall will yield exactly the reverse 
results. 
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- ~(-3r,+2r~~-2r~~~+4r,~~3) 

ANALYSE DE STABILITE NON LINEAIRE DUN FILM TOMBANT SUR UN PLAN 
INCLINE CHAUFFE OU REFROIDI, AVEC VARIATION DE VISCOSITE 

R&ann&--Les hquations cinematiques non 1inCaires pour f’epaisseur du film, prenant en compte I’effet de 
variation de la viscositi selon le type Arrhenius sont utilis&es pour ttudier la stabilitt non lineaire des 
ecoulements en film. Les resultats montrent que le refroidissement (chauffage) par la paroi stabilise 
(destabilise) les Bcoulements en film, a la fois linkairement et non linkairement. La stabiliti: supercritique 
et l’instabiliti sous-critique prouvent possible. avec un chauffage plus intense, la reduction de l’amplitude 
de seuil dans la region instable sous-critique et l’accroissement de l’amplitude des ondes supercritiques. La 
stabilite est aussi influenc& par le nombre de Prandtl de telle man&e que la stabiliti est accrue (diminu~e) 

quand la valeur du nombre de Prandtl augmente, avec le refroidissement (chauffage). 

UNTERSUCHUNG DER STABILITAT VON FILMSTROMUNGEN ENTLANG EINER 
BEHEIZTEN ODER GEKUHLTEN, GENEIGTEN PLATTE MIT HILFE VON 

NI~HTLINEAREN BEZIEHUNGEN UND VARIATION DER VISKOSITAT 

Zusammenfassung-Bei dieser Untersuchung tiber die Stabilitlt von Filmstriimungen werden nichtlineare 
Bewegungsgleichungen fiir die Filmdicke benutzt, die eine Variation der Viskositat nach der Arrhenius- 
Beziehung berticksichtigen. Die Ergebnisse zeigen, dal3 das Kiihlen (Beheizen) der Wand die Filmstromung 
sowohl bei linearer als such bei nichtlinearer Betrachtung stabilisiert (destabilisiert). Es ist miiglich, sowohl 
oberhalb der G~nz~dingung Stabilitat als such im ~terkritischen Bereich Instabiijt~t zu erhalten, wobei 
eine stiirkere Beheizung im instabilen Gebiet den Grenzwert der Amplitude emiedrigt bzw. die Amplitude 
von iiberkritischen Wellen vergr6Bert. AuBerdem beeinfluBt die Prandtt-Zahl die Stabilitdt : bei steigender 

Prandtl-Zahl und Kiihlung (Beheizung) der Platte wird der Stabilitiitsbereich erweitert (verringert). 

AHAJIW3 H~~H~~HO~ Y~O~~~BO~T~ ~B~~EH~~ HJIEHKH ~~~KOCT~ C 
~EPEMEHHO~ BR3KOCTbIO0, ffEKA~~E~ HO HAFPETOZf HJIH OX~A~~EHHO~ 

IUIOCKOCTM 

hmoTamm--&7~ wcne~oBawin Henwseihoii yc~ofireaocrw Tegewx nneHKH xwwoc~~ c BrwocTbm, 

H3hieHnmweficicr no CooTfiomeHmo T&ma Appennyca, ncnonbsymrcs nenmieiinbte muier.rarn~ectoie ypan- 
HeHHIl .&its TO,IIIiHHbl ~,leHKH. Pe3yJlbTaTbi llOLa3bIBaIOT,PTO OXJIaKLIeHHe(Har~B)cO CTOPOHU CTeHKB 
6yAeT ~a6H~H3~~~Tb (A~a6~H3H~~Tb) TeYeIiUe l'LlleHICll ~KBAKOCK'H KaK B JEiEk-iHOM, TaK kl HeJIB- 

HeSiHoM ~~6nn~eH~~. B cnyvae cHJtbHOf0 Harpesa noATBep~~eHo HaJniSne C~PXKP~T~~~KO~ ycroii- 

YHBOCTH H ~OICPIiTUWCKOiii HeyCTOiiWSBOcTE, IIpliBOASWiX R yMeHbmeHWO nOpOI-0BOi-i aMlTJEiTyiWi B 
~OKPHTHWCKOii Hey'ZTOkVHBOfi 30He H yBeJWIeHSiIO aMIlJIKiTylJb1 CBepXKpHTMWCKuX BOJIH. Ha yCTOii'lS- 
BOcTb TBKXe OKa3blBWT BJtHIlHHe WCnO npaHATJIn:CerO POCTOMyCTOihBOCTb TeWHHI llpH OXIM%W 

wiu (riarpese) ynermsnsaercr (yMenbmaercn). 


