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Abstract—Non-linear kinematic equations for film thickness which takes into account the effect of viscosity

variation governed by the Arrhenius-type relation are used to investigate the non-linear stability of film

flows. The results show that cooling (heating) from the wall will stabilize (destabilize) the film flows both

linearly and nonlinearly. The supercritical stability and subcritical instability both prove possible here with

higher heating tending to reduce the threshold amplitude in the subcritical unstable region and increase the

amplitude of supercritical waves. Stability is also influenced by the Prandtl number in the way that stability
increases (decreases) as the Prandtl number increases when cooling (heating).

INTRODUCTION

THE FLOW of thin liquid films has been shown to be
linearly unstable with respect to surface waves [1, 2].
The non-linear modification of linear waves was stud-
ied by Benney [3], but the effect of surface tension was
not included, so that the solution had no tendency
towards a finite amplitude equilibrium state. If the
effect of surface tension is included, then the super-
critical stability was found to be possible [4-6].
Further, Anshus [4] reported that non-linear insta-
bility appeared in the region near the upper branch of
the neutral stability curve, which was just opposed to
ref. [6] finding that such instability existed near the
lower branch of the neutral stability curve in the a—
Re plane.

The effects of the temperature gradient across a film
with constant viscosity and with phase change on the
interface has been investigated by Unsal and Thomas
[7. 8], Spinder [9] and Kocamustafaogullari [10].
However, as the gradient tends to be high, the assump-
tion of constant viscosity can hardly be justified. Shair
[11] and Yih and Seagrave [12] have also studied this
problem by assuming that viscosity varies con-
tinuously with depth in a fixed manner. All their stud-
ies come to the same conclusion that heating from the
wall destabilizes the film flow, while cooling stabilizes
the system.

Since these studies assumed a fixed depth depen-
dence for the viscosity, perturbation of the viscosity
was not allowed, as indicated by Spindle [13]. It was
Craik and Smith [14] and Goussis and Kelly [15, 16]
that started considering the effect of viscosity per-
turbation. Craik and Smith assumed that the viscosity
of a fluid element remains constant as it is convected
in the flow, and so were thought to have ignored the
effects of diffusion. While Goussis and Kelly revealed
that, in the case of cooling, a cut-off Prandtl number,

above which the flow turned to be linearly stable with
respect to long waves and linearly unstable with
respect to short waves [16], did exist. Apparently,
most of their studies were addressed to linear theory
analyses.

This paper studies the non-linear stability of liquid
film flows with viscosity variation depending expo-
nentially on temperature on a valid-for-long-waves
basis. Effects of surface tension and perturbations of
the viscosity are also included.

THE NON-LINEAR KINEMATIC EQUATION

Consider a liquid film flow down an inclined plane
as shown in Fig. 1. With all properties being constant
except viscosity that varies with temperature accord-
ing to the Arrhenius-type relation, the governing
equations are
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where u, v, are the velocities, p the density, ¢, the
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NOMENCLATURE
A,B,C functions of parameters Greek symbols
Ar Arrhenius number o dimensionless wave number
c complex wave velocity, ¢, +ic; B parameter indicating the gradient of
¢ specific heat of liquid viscosity
g gravitational acceleration y angle of inclination
h film thickness £ small parameter
k thermal conductivity of liquid n perturbation of film thickness
L,Ly, L, operators 0 dimensionless temperature
P pressure of gas A wavelength of disturbance
Pr Prandt! number A increment of wave speed
Pr, cut-off Prandtl number U viscosity
R radius of curvature of the free surface v kinematic viscosity
Re Reynolds number P density
Re, critical Reynolds number o dimensionless surface tension
S surface tension Ty normal stress
t time T, shear stress.
to time scales
T temperature Subscripts
T. temperature of the wall . L .
x,y,1,... differentiation with respect to
T, temperature on the free surface
u velocity in the x-direction Xl
U reference velocity
v velocity in the y-direction Superscript
x,y spatial coordinates. * dimensionless quantity.

Fic. 1. Diagram of the film flow system.

u=v=0 T=T, (&)
At the free surface, the constant temperature, the bal-
ance of normal and tangential forces, and the kine-
matic conditions are

at y=0.

S Dh
T=T, 17,=0, Tn—ﬁ—:_pg’ Ft=v
at y=h (©

where 7,, 7., p, are the shear stress, the normal stress,
and the gas pressure at the free surface, respectively,
S the surface tension and R the radius of curvature of
the free surface. After defining some dimensionless
variables as follows :

specific heat, p the pressure, T the temperature and k
the thermal conductivity of the liquid. The viscosity
u, which is dependent on temperature, is given as
follows:

H = Hs exp{—Ar(T— T))/T|]
p P

where T, is the temperature at the free surface and Ar
the Arrhenius number. For the boundary conditions,
the no-slip and constant temperature conditions at
the wall are

t*=a—£t, u*=%, v*—%
Pe = Re Pr, 0=T],;:];,s
M

where
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T S Gju —e (54 1)]
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the governing equations and boundary conditions
become (the respective stars are dropped)
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3:1
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8,, = aPe(0,+ull, +o00,)—a%6,,  (11)
u=0=p, =1 at y=0 (12
0=0 at y==h (13}
(w,+ao,) (1 —a?h) —d0uh, =0 at y=h
(14)
P2t (2R3 (e h)
+207o N~ R h (142782~ ¥2 = 9
at yp=~h (15)
hotuh, —v at y=#h (16)

For the isothermal problem, the film flow becomes
unstable under long wave perturbations (small wave
number), then the solutions of the above system could
be obtained in the following way. By introducing the
expansions

U= U +ﬁul E i
v=yopytar;+ -
P=potap +
8=0y+af, + - an

then substituting equations (17) into equations (8)—
(16) and collecting terms by order which enable us to
obtain the following zero- and first-arder systems :

O™
(e;wﬂ aib‘)ﬁ e L

=0 (18)

2
pny+ﬁc01y=0 (19
Bope =0 20
uy=0=1ty, fy=1 at p=0 1)
Bo=0 at y=4h (22)
¥y =0 al y=4h (23)
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po=—20"aN " Re™h, at y=~h; (24)
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#=0=3, 6,=0 at y=0 (28)
t,=0 at p=nh (29)

v

2 +£Eu0,=0 at y=~h (30)

After a long and tedious procedure, the zero- and
first-order solutions are as follows :
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Substituting solutions (31) into equation (16) and
eliminating h, appearing in the first-order solution by
equation (16) itself, yields the following non-linear
kinematic equation of surface height :

h,+A(hh, +o % [B(Wh, +C(Rh] =0 (32)

where
Ah) = T \h?
B(h) = (T3~ T T,)Pe+(Ts—T,Ts)Rejh®

—2T, cotyh®
C(h) = 20*T,oN~ "> Re= %3 p?

in which T, a,, r, are given in the Appendix.

STABILITY ANALYSIS

In the unperturbed state, the non-dimensional
thickness A is equal to 1. Therefore, the non-dimen-
sional film thickness for the perturbed state could be

expanded in the following form:
h=14+n (33)

where n is the perturbation of the thickness. Sub-
stituting equation (33) into equation (32) and keeping
the terms up to third order in # lead to the evolution
equation of

0
Ly = —(A’n+%A”rI2)11x—aa—x [(B'n+3B"n*)m.

HECN+3CM ]+ 00 (34

0 d d? o4
L"a*‘Aa +(1|:ng +Cé?]

where

and the values of 4, B and their derivatives are evalu-
atedath=1.

For the linear stability analysis, the non-linear part
of equation (34) is neglected and the normal mode
solution is assumed as

n=Texplix—cH)]+Texp[—i(x—cH)] (35)
then, the complex wave celerity becomes
¢ = ¢ +i¢ = A+ia(B—C). (36)

If ¢, > 0, the film flow is linearly unstable. On the
other hand, if ¢; < 0, the film flow is linearly stable.

For the non-linear stability analysis, we use the
method of multiple scales

0 8, 8, .0
o a tear TV A
8.8, 9
ox  ax T ox,

'7=87I1+82712+33’I3 3N
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then equation (34) becomes

(Lo+eL,+>Ly)(en, + &2, +&’n3)

= —g?N,—e’N; (38)
where
Ly,=1L
I3} 0 J @ o 0
L, = a—tl+A7+ [233—6_4- CEE:I
G, 0? 0% 02
L, = E-&-a[Ba 2+6C6 7 502 :I

Ny = A +alB (011 +113)
+ C7 (110 oxxx + 1151 1xxx)]

Ny = A’ (M2 + 0200+ 010 0 )+ 3470371
+alB (27 1M 20+ 11 2xx + M2 1w, + 21171,
+2'11xlx1)+B”(%r’%r’1xx+nl"%x)

+ (1M 2000 + W 1eextl2 T 16 20xx
411 e, F 30 0 e, 1 10 1)

+ C” %'1 %?] lxxxx + il lxxx)]'

Equation (38) is then solved order by order to get
the solution for the O(¢) equation — Loy, =0
n = r(xl,tl,tz) €Xp [i(x——c,t)]+C.C. (39)

Then the solution of n, and the secular condition
for the O(e®) equation are

7, = C,Iexp [2i(x—c, )] +C.C. (40)
gt% +D, g;—g —¢CT+ET =0  (41)
where
C,=C,+iC; = —L—Za(B'—C’)—iA’
42(4C—B)
D, =B-6C
= E, +iE;
E,=—AC,;+a[i(C"—-B")+(7C'~B")C,]
E, = A'Cy,+34"+a[(7C"—B)Cy).

We shall use equation (41) to investigate the weakly
non-linear behaviour of film flow. Firstly for a filtered
wave, there is no spatial modulation and this solution
may be written as

I = {exp[—iAs,] (42)

substituting expression (42) into equation (41), and
neglecting the diffusion term, we obtain the following
results:
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¢\
<= (5)
YN
EA—Eh(Elr).

From the form of &/ one knows that in the linearly
unstable region (¢; > 0) the condition of existence of
the supercritical wave is E,, > 0, and 2¢( is the final
amplitude. On the other hand, in the linearly stable
region (¢; < 0) if E|, <0 then the film flow has the
behaviour of subcritical instability and 2e{ is the
amplitude of threshold.

It is known that experimental work to control the
wave motion at a highly specific mode is an extremely
difficult task; the presence of side-band disturbance
can hardly be avoided in laboratories or in practice.
Studies for this disturbance were given by Eckhaus
[17], Stuart and Diprima [18] and Keefe [19]. Just
like the analysis of ref. [6], in this study, the stable
condition of the supercritical wave under side-band
disturbance is D, < 0.

43)

RESULTS AND DISCUSSION

From equation (36), we have the expressions of
linear wave speed and amplitude rate as

6 = Tl
ac; = 02[(T5— T, T,) Re Pr+(Ts—T,Ts)Re

—2T,coty—20°T,o N~ '3 Re=??]. 44

It is noted that the linear component of wave speed,
¢,, obtained in this paper is identical with equation
(24) of ref. [15]. When the film is heated from below
(B < 0) this speed increases as f§ decreases. Also, when
the film is cooled from below (8 > 0), this speed
decreases as f increases. It can be shown in Fig. 2 that
as b—0, ¢, =2; while as > 0, ¢,=0, and >
—o0, ¢, = 3.

The condition of linear stability or instability is
dependent on the sign of ac;. The neutral stability

3.0

2.0[»

=3

(o] L
-10.0 0 10.0
~Ar
= — (T~ T,
B= )

W s
s

F1G. 2. Linear wave speed vs f.
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Fi1G. 3. Cut-off Prandtl number vs §.

curve (xc, = 0) which separates the a—Re plane into
two regions; namely, the linearly unstable region
(ac; > 0) where the small disturbance grows with time
and the linearly stable region (ac; < 0) where the small
disturbance decays with time. It is found that when
the value of § is positive then the value of (T3— T, T,)
is negative, suggesting a cut-off Prandtl number, Pr.,
exists. When the Prandtl number is larger than this
value the flow is linearly stable with respect to long
waves. Figure 3 shows that the value of the cut-off
Prandt]l number decreases as the value of f§ increases.

From expression (44), it is found that the critical
Reynolds number and the most rapidly growing linear
mode are respectively

2T, coty
(Ty—T1T) Pr+(Ts—T1,T5)
N3 Re¥3
Uy =4———
4T, 0

Re. =
[(T3—T,T,)Re Pr

1/2
+(Ts—T,Ts)Re—2T, coty]} .45

From Fig. 4 it is readily seen that increasing the
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s
4
7
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/
’ i
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.09 - 7 .
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Fi1G. 4. Linear neutral curve with different values of f:

c=91125, Pr=7, y=un2. B=—1; —
B=02;—— f=1
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FIG. 6. Linear amplitude rate with different Prandtl numbers

when >0, f=1.5 Re=35, y=mn/2. ------ CPr=2:
, Pr=4.

value of B will increase the linearly stable region in
the a—Re plane. Also, Fig. 5 shows that decreasing the
value of # will increase the linear amplitude rate. The
above results both indicate that cooling stabilizes the
film flow, while heating destabilizes it.

Figure 6 shows that increasing the Prandt! number
will decrease the linear amplitude rate when g > 0.
Figure 7 shows that increasing the Prandtl number
will slightly increase the linear amplitude rate when
B <0.

The non-linear stability analysis is used to study
whether the finite amplitude disturbance in the lin-
early stable region will cause instability (subcritical
instability), as well as to study whether the subsequent
non-linear evolution of disturbance in the linearly
unstable region will develop into new equilibrium with
finite amplitude (supercritical stability) or such evo-
lution will grow towards an explosive state. A review
of the characteristics of equation (40) will show that

and CHENG-I. WENG

600

3001
-
NB O B
2

-300}
6.00 . .
0 0.05 0.10 0.15

Fi1G. 7. Linear amplitude rate with different Prandtl numbers
when f <0, f=—1.5, Re=35,y=mn/2. ¢ =911.25.
Pr=2; , Pr=4.

>

the negative value of E |, tends to cause the system to
be nonlinearly unstable. Such instability in the linearly
stable region is called subcritical instability. That is,
when the amplitude of disturbance is larger than that
of the threshold, then the amplitude will grow
although the prediction from the linear theory is
stable. On the other hand, such instability in the
linearly unstable region will lead the system to an
explosive state which could be considered as solutions
of complex patterns.

It is observed, the shaded regions of Figs. 8 and 9,
that both subcritical instability (¢; < 0, E;, < 0) and
the explosive solution (¢, > 0, E,, < 0) are possible for
the film flow. Additionally, it is found that increasing
the value of f§ will decrease the areas of regions of
non-linear instability in the a—Re plane. It is also
observed that supercritical stability (¢, > 0, E,, <0,
blank region in the linearly unstable region) is possible
near the region of the upper branch of the linearly

0.15

ac, >0,Ex>0

0.10

acj =0

0.05
N
SRS
< X )\s \En<\0 \ \\\
0 5.00 \10.00

Re = ij—f
FiG. 8. Non-linear stability curve for the case of cooling:
B=1,6=91125Pr=T7y=m/2.~------ . Side-band neu-
tral stability curve.
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F1G. 9. Non-linear stability curve for the case of heating:
p=—-1,6=91125 Pr=T7y=mn/2.----- , Side-band neu-
tral stability curve.
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Fic. 10. The amplitude of threshold in the subcritical
unstable region: Re =7, 0 =911.25, Pr =7,y = n/2.

neutral curve. In such a case, filtered waves are linearly
stable when subject to side-band disturbance.

It is interesting to note that ref. [4] predicted the
possibility of the existence of subcritical instability for
the film flow, but it did not discover the explosive
solution in the region near the lower branch of the
neutral stability curve. In contradiction to this, refs.
[5, 6, 8] indicated that the subcritical instability was
not possible for the film flow. In reality, the possibility
of existence of subcritical instability and supercritical
stability was pointed out by some researchers [20, 21].
From our viewpoint, especially for the case of heating
from the wall (8 < 0), those results of previous studies
of refs. [4-8] perhaps have expressed some aspects
of the film flow system but the description was not
adequate.

Figure 10 displays the amplitude of threshold in the
subcritical unstable region with different values of §. It
is found that heating will decrease such an amplitude.
From Fig. 11, we find that the finite amplitude of a
supercritical wave will increase as f decreases.

Figure 12 shows that increasing the Prandtl number
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2wh

Fi1G. 11. Finite amplitude of supercritical wave with different
valuesof B: Re= 5,6 =911.25, Pr="T7,y = n/2.
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FiG. 13. Finite amplitude of supercritical wave with different
Prandtl numbers when B<0, f=-15 Re=2,
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will decrease the amplitude of supercritical waves
when B> 0. Figure 13 shows that increasing the
Prandtl number will slightly increase the amplitude of
the supercritical wave when § < 0. Also, Fig. 14 shows
that the difference of non-linear wave speed (c,+&2A)
and linear wave speed (c,) increases when the value of
B decreases.

It is clear that, from the choice of reference tem-
perature in this study, cooling results in a virtually
more viscous fluid, while heating results in a less vis-
cous one. This is the reason why cooling causes film
flow more stable than heating does.

The above theory has the following three limi-
tations for applications.

(1) Refer to equations (15) and (24), when Reyn-
olds number becomes zero, a singular point exists.
The results might not be applied at this point and need
further modifications.

(2) The value of o cannot be too large, since long
waves are addressed in this analysis. In the case of
cooling, the value of B can never exceed the cut-off
value as pointed out by ref. [16].

(3) In this study a’c is taken to be of O(1) so
that the applications may be invalid in the region
O(x) « O(6~"?). For most of the known liquids the
low bound of O() is about of O(10~2) here.

CONCLUSION

In this study, a non-linear kinematic equation for
film thickness taking into account the effect of vis-
cosity variation is used to investigate both the linear
and non-linear stabilities of film flows. Since the vis-
cosity variation is mainly caused by the thermal effect
and the interfacial temperature is taken as the ref-
erence temperature, hence, cooling from the wall
results in a more viscous fluid, while heating results
in a less viscous one. The parameter, 8, the gradient
of viscosity, is introduced here and its value is positive
(negative) when cooling (heating) from the wall.

Ci-CHUAN HwaNG and CHENG-I. WENG

For the linear theory, a closed form solution is
reached, from which the critical Reynolds number and
most unstable linear mode are obtained analytically.
It is found that the linear waves are travelling at three
times the speed of the unperturbed surface as f§
approaches — o0 ; as ff approaches oo, the linear wave
speed approaches zero. It is also found that the linear
amplitude rate increases as the value of f decreases.
For the case of cooling, a cut-off Prandtl number
exists. For values above this number, the flow is stable
with respect to long-wave disturbance. Increasing the
Prandtl number will stabilize (destabilize) the film
flow when § > 0 (<0).

The non-linear stability analysis shows that,
especially in the case of heating from the wall (8 < 0),
both supercritical stability and subcritical instability
are possible for the film flow system. The nonlinearly
unstable region in the a—Re (wave number—Reynolds
number) plane will increase when the value of §
decreases. Also, decreasing the value of § will reduce
the amplitude of threshold in the subcritical unstable
region and will increase the amplitude of the super-
critical wave.

To wrap up, heating from the wall will linearly and
non-linearly destabilize the film flow system, while
cooling from the wall will yield exactly the reverse
results.
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ANALYSE DE STABILITE NON LINEAIRE D'UN FILM TOMBANT SUR UN PLAN
INCLINE CHAUFFE OU REFROIDI, AVEC VARIATION DE VISCOSITE

Résumé—Les équations cinématiques non linéaires pour I'épaisseur du film, prenant en compte l'effet de
variation de la viscosité selon le type Arrhenius sont utilisées pour étudier la stabilité non linéaire des
écoulements en film. Les résultats montrent que le refroidissement (chauffage) par la paroi stabilise
(déstabilise) les écoulements en film, 4 la fois linéairement et non linéairement. La stabilité supercritique
et Pinstabilité sous-critique prouvent possible, avec un chauffage plus intense, la réduction de I'amplitude
de seuil dans la région instable sous-critique et 'accroissement de Pamplitude des ondes supercritiques. La
stabilité est aussi influencée par le nombre de Prandtl de telle maniére que la stabilité est accrue (diminuée)
quand la valeur du nombre de Prandtl augmente, avec le refroidissement (chauffage).

UNTERSUCHUNG DER STAB}LITAT VON FILMSTROMUNGEN ENTLANG EINER
BEHEIZTEN ODER GEKUHLTEN, GENEIGTEN PLATTE MIT HILFE VON
NICHTLINEAREN BEZIEHUNGEN UND VARIATION DER VISKOSITAT

Zusammenfassung—Bei dieser Untersuchung iiber die Stabilitdt von Filmstromungen werden nichtlineare
Bewegungsgleichungen fiir die Filmdicke benutzt, die eine Variation der Viskositit nach der Arrhenius-
Beziehung beriicksichtigen. Die Ergebnisse zeigen, daB das Kiihlen (Beheizen) der Wand die Filmstromung
sowohl bei linearer als auch bei nichtlinearer Betrachtung stabilisiert (destabilisiert). Es ist moglich, sowohl
oberhalb der Grenzbedingung Stabilitiit als auch im unterkritischen Bereich Instabilitit zu erhalten, wobei
eine stirkere Beheizung im instabilen Gebiet den Grenzwert der Amplitude erniedrigt bzw. die Amplitude
von {iberkritischen Wellen vergroBert. AuBerdem beeinflufit die Prandtl-Zahl die Stabilitit : bei steigender
Prandtl-Zahl und Kiihlung (Beheizung) der Platte wird der Stabilititsbereich erweitert (verringert).

AHAJIN3 HEMUHERHON YCTOMUYMUBOCTHY JBWXEHUA IJIEHKY XHUAKOCTH C
TTEPEMEHHOM BS3KOCTBIO, CTEKAIOIEN 11O HATPETOH MJIM OXJTAXIEHHOH
MJIOCKOCTH

Amsoraus—/{18 HCCNENOBAHMS HEMMHEHHOH yCTONYMBOCTH TEYEHHS IJIEHKH XHAKOCTH C BA3KOCTBIO,
H3MEHSIOUIEHCS IO COOTHOWEHHIO THINIA APPEHHyCa, HCMOJIL3YIOTCH HETHHEHHBIC KNHEMAaTHYECKHE ypaB-
HEHUA JUIA TONLIMHLL NeHKH. Pe3ynbTaThl NOKa3LIBAIOT, YTO OXJIAXKACHHE (HAIPEB) CO CTOPOHBI CTEHKH
6yner crabWIHINPOBaTh (AeCTaCHIM3HPOBATH) TEUSHHE TUICHKH XHAKOCTH KaK B JHHEHHOM, Tak ¥ HelH-
Heiinom npubmmxennn. B ciyvae cHIbHOrO Harpesa MOATBEPKCHO HAMHYHE CBEPXKPUTHYECKOH yCTOH-
YHBOCTH M JOKPHTHYECKOH HEYCTOHYMBOCTH, NPHBOAALIMX K YMEHBLILUECHHIO NOPOrOBOA aMMIMTYIbl B
JOKPHTHYECKO#l HEYCTOHMMBOM 30HE H YBEHYCHHIO aMIUTMTYIbl CBEPXKpHTHYeCKHX BoJH. Ha ycroium-
BOCThH TAKKE OKa3biBaeT BiHsAHHE Yncao [IpaHaTIA: C €T0 POCTOM YCTORYMBOCTDL TEYEHHMS NIPH OXJlaxae-
HMM (HArpese) YBEJIHYHBACTCH (YMEHBILACTCS).



